Here are several interesting graphs plotted with Advanced Grapher.
| Regression The equations of curves are obtained with the help of the regression analysis of the tabular data (which are shown by points) Y(x)=-(1.1100319*10^(-8))*x^9 + (4.2010685*10^(-8))*x^8 + (4.8204417*10^(-6))*x^7 - (1.9123759*10^(-5))*x^6 - (6.0569249*10^(-4))*x^5 +0.0026407*x^4+ 0.0193816*x^3 - 0.0956714*x^2 + 1.6439131*x + 1.0095675 (polynomial regression, polynomial power is 9) Y(x)=1.665949*x+1.3004023 (linear regression) |
| Cassini curve R(a)=2^2*cos(2*a)+sqrt(2.5^4-2^4*sin(2*a)^2) |
| Addition of oscillations Y(x)=sin(x+1)*3 Y(x)=sin(x+2)*2 Y(x)=sin(x+1)*3+sin(x+2)*2 |
| Smoothing Table: 7 items |
| Damped oscillations Y(x)=exp(-x/4)*10*cos(x*3) Y(x)=exp(-x/4)*10 Y(x)=-exp(-x/4)*10 |
| Ellipse 3*x*x-2*x*y+x*4+y*8+3*y*y-8<0 3*x*x-2*x*y+x*4+y*8+3*y*y-8=0 |
| Epicycloid X(t)=(6+2)*cos(t)-2*cos((6+2)/2*t); Y(t)=(6+2)*sin(t)-2*sin((6+2)/2*t) R(a)=6 |
| Equation and inequality x*sin(x)+y*sin(y)<0 x*sin(x)+y*sin(y)=0 |
| Four-leaved rose R(a)=7*sin(2*a) |
| Ortogonal oscillations X(t)=sin(2*t); Y(t)=sin(3*t) |
| Resonance Y(x)=15/sqrt(4+(1.5*x-12/x)^2) Y(x)=15/sqrt(18+(1.5*x-12/x)^2) |
| Slope fields dy/dx=1/x^2 dy/dx=x Y(x)=-1/x Y(x)=x*x/2-10 |
| Tangents The equations of the tangents are obtained with the help of this program R(a)=5 X(y)=5 Y(x)=-0.5913984*x+5.8089414 Y(x)=0.5773502*x+5.7735026 X(y)=-5 Y(x)=-0.5773504*x-5.773503 Y(x)=0.5773504*x-5.773503 |
| Integer part Y(x)=int(x) |